Fourier Features For Person Detection in Depth Data

نویسندگان

  • Viktor Seib
  • Guido Schmidt
  • Michael Kusenbach
  • Dietrich Paulus
چکیده

A robust and reliable person detection is crucial for many applications. In the domain of service robots that we focus on, knowing the location of a person is an essential requirement for any meaningful human-robot interaction. In this work we present a people detection algorithm exploiting RGB-D data from Kinect-like cameras. Two features are obtained from the data representing the geometrical properties of a person. These features are transformed into the frequency domain using Discrete Fourier Transform (DFT) and used to train a Support Vector Machine (SVM) for classification. Additionally, we present a hand detection algorithm based on the extracted silhouette of a person. We evaluate the proposed method on real world data from the Cornell Activity Dataset and on a dataset created in our laboratory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of high impedance faults in distribution networks using Discrete Fourier Transform

In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...

متن کامل

Detection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis

Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...

متن کامل

Formation interface detection using Gamma Ray log: A novel approach

There are two methods for identifying formation interface in oil wells: core analysis, which is a precise approach but costly and time consuming, and well logs analysis, which petrophysists perform, which is subjective and not completely reliable. In this paper, a novel coupled method was proposed to detect the formation interfaces using GR logs. Second approximation level (a2) of GR log gained...

متن کامل

Person Detection and Head Tracking to Detect Falls in Depth Maps

We present a system for fall detection in which the fall hypothesis, generated on the basis of accelerometric data, is validated by k-NN based classifier operating on depth features. We show that validation of the alarms in such a way leads to lower ratio of false alarms. We demonstrate the detection performance of the system using publicly available data. We discuss algorithms for person detec...

متن کامل

Identification of mineralization features and deep geochemical anomalies using a new FT-PCA approach

The analysis of geochemical data in frequency domain, as indicated in this research study, can provide new exploratory informationthat may not be exposed in spatial domain. To identify deep geochemical anomalies, sulfide zone and geochemical noises in Dalli Cu–Au porphyry deposit, a new approach based on coupling Fourier transform (FT) and principal component analysis (PCA) has beenused. The re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015